Please download to get full document.

View again

of 75

AERODYNAMIC ANALYSIS ON A WING WITH DISTRIBUTED PROPULSION SYSTEM

The objective of this thesis is to model and simulate a wing powered with a distributed propulsion system at both take-off and cruise conditions. The thesis demonstrates the advantages of Distributed Electric Propulsion (DEP) by studying the flow
0 views75 pages
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Documenttranscript
    1 Aerodynamic analysis on a wing with distributed propulsion system    2 TABLE OF CONTENTS  INTRODUCTION ...................................................................................................................................7   1   WING SIMULATIONS AND RESULTS ......................................................................................8   1.1   Simulations ............................................................................................................................10   1.1.1   Case 1 - Simulation of A Plain Wing with No Distributed Propulsion System ............10   1.1.2   Case 2 - Simulation of A Wing with Distributed Propellers In Bestowed Configuration 14   1.1.3   Case 3 - Simulation of A Wing with Distributed Propellers In Deployed Stationary Configuration .................................................................................................................................18   1.1.4   Case 4 - Simulation of A Wing with Distributed Propellers In Deployed Rotary Configuration .................................................................................................................................21   1.2   RESULTS OBTAINED FROM SIMULATIONS ................................................................24   1.2.1   Case 1 - Simulation of A Plain Wing with No Distributed Propulsion System ............25   1.2.2   Case 2 - Simulation of A Wing with Distributed Propellers In Bestowed Configuration 30   1.2.3   Case 3 - Simulation of A Wing with Distributed Propellers In Deployed Stationary Configuration .................................................................................................................................37   1.2.4   Case 4 - Simulation of A Wing with Distributed Propellers In Deployed Rotary Configuration .................................................................................................................................40   2   SUMMARY/INTERPRETATION OF THE RESULTS AND VERIFICATION/VALIDATION 50   2.1   Summary/Interpretation of The Results .................................................................................51   2.2   Results Verification/Validation .............................................................................................54   2.2.1   Low-order approach methodology (Lifting line theory)................................................54   2.2.2   High-order approach methodology (CFD Approach) ....................................................54   2.2.3   Comparison with X-57 Project ......................................................................................55   2.2.4   Wind tunnel testing ........................................................................................................56   3   PROBLEMS FACED, RECOMMENDATIONS AND FUTURE WORKS ................................57   3.1   Problems Faced ......................................................................................................................58   3.2   Recommendations ..................................................................................................................58   3.3   Future Works .........................................................................................................................59   4   CONCLUSION..............................................................................................................................60   4.1   Acknowledgements ................................................................................................................61   BIBLIOGRAPHY..................................................................................................................................62   APPENDIX A  –   AIRFOIL COORDINATES, MATLAB CODE AND FIGURES .............................63   Case 1 - Simulation of A Plain Wing With No Distributed Propulsion System ...............................63   Airfoil Coordinates ........................................................................................................................63   CASE - 2 Wing with distributed propellers in bestowed configuration ............................................71   CASE 3 - Wing with distributed propellers in deployed stationary configuration ............................73   CASE 4 - Wing with distributed propellers in deployed rotary configuration ..................................75      3 NOMENCLATURE A/S: Wing area  b: Wing span B: Number of blades c: Airfoil length C: Wing chord (MAC) C D : Wing drag coefficient C L : Wing lift coefficient (C L /C D ): Ratio of wing lift coefficient to the wing drag coefficient C LMAX : Wing maximum lift coefficient C Li : Wing ideal lift coefficient C m : Wing pitching moment coefficient C r  : Root chord C t : Tip chord D: Drag J: Advance ratio L: Lift L/D: Wing lift to drag ratio  N: Number of blade elements v: Take-off velocity V: Absolute velocity i w : Wing incidence V a : Axial velocity  t : Wing twist angle/Angle pf attack ACRONYMS AIAA: American Institute of Aeronautics and Astronautics AR: Aspect ratio BEMT: Blade Element Momentum Theory CAD: Computer Aided Design CFD: Computational Fluid Dynamics HLD: High Lift Device HP: High-lift propeller MAC: Mean Aerodynamic Chord  NASA: National Aeronautics and Space Administration  N  p : Number of propellers TP: Tip propeller/Cruise propeller    4 FIGURES Figure 41 - TP, HP1, HP2, HP3, HP4, HP5 and HP6 and their rotational direction ................. 9   Figure 42 - Geometry of the wing with a taper ratio of 0.5 ..................................................... 10   Figure 43 - Twisted wing (-4°) ................................................................................................ 10   Figure 44 - Mesh of the fluid domain around the wing ........................................................... 11   Figure 45 - Influence of the body mesh created around the wing geometry ........................... 11   Figure 46 - Inflation layers around the surface above the wing .............................................. 12   Figure 47 - Finer mesh around the wing leading and trailing edges ........................................ 12   Figure 48 - Side view of the wing geometry designed to simulate cruise condition with the  propellers in static configuration ............................................................................................. 14   Figure 49 - Nacelles with the folded high-lift propellers (HPs) .............................................. 14   Figure 50 - Mesh of the fluid domain around the geometry of the wing with the 6-folded stationary HPs at cruise ............................................................................................................ 15   Figure 51 - Influence of the body created in the zone around the wing with the 6-folded stationary HPs at cruise ............................................................................................................ 15   Figure 52 - Finer mesh around the wing leading and trailing edges of the wing with the 6-folded stationary HPs at cruise ................................................................................................ 16   Figure 53 - Mesh around the body of the cruise and HPs propellers in stationary configuration at cruise .................................................................................................................................... 16   Figure 54 - Wing geometry with the imported HPs and TP in deployed rotary configuration (take-off) .................................................................................................................................. 18   Figure 55 - HPs in deployed stationary configuration (take-off) ............................................. 18   Figure 56 - Mesh of the fluid domain around the geometry of the wing with cruise and HPs in deployed static configuration at take-off ................................................................................. 19   Figure 57 - Influence of the body created in the zone around the wing with cruise and HPs in deployed static configuration at take-off ................................................................................. 19   Figure 58 - Finer mesh around the wing leading and trainling edges of the wing with cruise and HPs in deployed stationary configuration at take-off ....................................................... 20   Figure 59 - Mesh around the body of the TP and HP propellers in deployed static configuration at take-off .......................................................................................................... 20   Figure 60 - CFX mesh (without body of influence) ................................................................ 21   Figure 61 - Inlet velocity.......................................................................................................... 22   Figure 62 - Angular velocity of HP ......................................................................................... 22   Figure 63 - Model setup in CFX .............................................................................................. 23   Figure 64 - Contour of static pressure around the wing........................................................... 25   Figure 65 - High-pressure region at the wing leading edge (stagnation point) ....................... 26   Figure 66 - Velocity contour around the wing model .............................................................. 27   Figure 67 - Boundary layer in the region above the wing surface ........................................... 28   Figure 68 - Velocity streamline around the wing model ......................................................... 29   Figure 69 - Local static pressure of the nacelle and wing at 2.89 m from the wing root ........ 30   Figure 70 - Static pressure at the local wing plane at 1.95 m from the wing root ................... 31   Figure 71 - Velocity contour on the local plane of the nacelle and propeller at 2.89 m from the wing root ............................................................................................................................ 32   Figure 72 - Velocity contour on the local plane of the wing at 1.95 m from the wing root .... 33   Figure 73 - Propeller blade velocity at a plane near the tip ..................................................... 34   Figure 74 - Velocity streamline at 4.4 m from the wing root .................................................. 35   Figure 75 - Static pressure at the local stationary HP .............................................................. 37   Figure 76 - Velocity contour at the local stationary HP .......................................................... 38   Figure 77 - Velocity streamline on a local plane in the vertical half of the HP....................... 39   Figure 78 - Static pressure of the rotary tip propeller (TP)...................................................... 40      5 Figure 79 - Static pressure on a local wing section of the wing with rotary propeller ............ 42   Figure 80 - Velocity contour around the rotary TP.................................................................. 43   Figure 81 - Velocity contour near the HP ................................................................................ 44   Figure 82 - Streamline velocity of the rotary propeller in stationary frame ............................ 48   Figure 83 - Velocity vertex of the rotary propeller .................................................................. 49   Figure 84 - MATLAB code use for lift distribution ................................................................ 69   Figure 85 - Lift distribution along semi-span .......................................................................... 70   Figure 86 - Generated dimension of the tip chord (0.6974 m) ................................................ 70   Figure 87 - Propeller design in SolidWorks ............................................................................ 71   Figure 88 - Imported TP from SolidWorks to ANSYS ........................................................... 72   Figure 89 - Constant twist on TP from root to tip.................................................................... 72   Figure 90 - Location of TP or cruise propeller ........................................................................ 72   Figure 91 - Imported HP from SolidWorks to ANSYS ........................................................... 73   Figure 92  –   Nacelle modelling ................................................................................................. 73   Figure 93  –   Support for nacelle ............................................................................................... 73   Figure 94 - 4   twist applied to the wing in deployed configuration ........................................ 75   Figure 95 - Projection on the wing for the leading edge and trailing edge .............................. 75  
Advertisement
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x